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other than 3d» for which the calculations were carried
out.

Comparison with experiment

There have been very few experimental determinations
of the incoherent scattering intensities (for C, Al, KCl,
CaFs and NaCl) but these have not included any of
the atoms considered in this paper. While the agree-
ment between theory and experiment has been very
good for these cases, it would be valuable to have
accurate measurements for the transition elements,
both for their own inherent interest and to compare
with theory in order to test its validity. While the
experiments are not easy to perform we hope that
they will soon be undertaken.

APPENDIX A

We give in Table 3 a listing of the atoms and ions
for which accurate incoherent scattering functions are
now known in order to provide a convenient summary
of the data available to date. The results of the present
work are not included.

We are pleased to thank Mrs Anna Hansen &
Mrs Athena Harvey for their help with the computa-
tions.
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Some Calculations using the Ewald Transformation

By R. A. CowLEY
Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

(Received 21 September 1961)

The calculation of the energy, dispersion relations of the normal modes, and elastic constants of a
crystal requires a knowledge of the long-range Coulomb interactions between the atorns. The summa-
tions involved can be expressed in dimensionless form and converted to a rapidly convergent form
by using the Ewald transformation. Machine programs have been written to calculate the Madelung
coefficients, Coulomb coefficients, and the expansions of the Coulomb coefficients, (which are
required to calculate the elastic constants), for crystals which have at least orthorhombic symmetry.
Both the Madelung coefficients, and the Coulomb coefficients for wave-vectors parallel to the
ferro-electric axis, have been calculated for barium titanate, using the atomic positions both of the
paraelectric phase and of the ferroelectric phase at 20 °C.

The total energy of a non-metallic crystal is usually
divided into two parts—one from the Coulomb inter-
action of point charges, dipoles and higher multipole
moments representing the long-range interactions
between the atoms in the crystal, and the other from

the short-range or repulsive forces. Although the
potential for the interaction of point charges and
multipoles is readily obtained from classical electro-
statics, the short-range interaction is essentially of a
quantum-mechanical nature, and cannot usually be
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calculated explicitly. If however the short-range
interaction between different pairs of atoms within
the crystal is either known or assumed to have some
particular form, then the contributions from the
short-range interactions to both the energy of the
crystal and the forces on an atom are obtained by
summing these interactions over comparatively few
atoms. On the other hand the potential for the
Coulomb interaction is easily obtained but the long-
range nature of the force makes the summation much
more difficult. The summations involved can however
be made more rapidly convergent by using the Ewald
transformation, (Ewald, 1920; Born & Huang, 1954),
which is based on the identity

Iym\ ex
0
The contribution to the energy of the crystal from

the interaction of an atom at x(}) carrying charge 2
with atoms at x(4) having charge z;- is given by

—x(3) -

The prime over the summation sign indicates the
omission of the term (3)=(}), and 7 is any convenient
characteristic dimension of the lattice.

The total electrostatic or Madelung energy is then
given by

1/x(@) - —x[?e?dg. (1)

zizie xi 1 = 2oz 3 37 1/1x(5)
m

> zezpe okt |T .
e
The coefficients oxx are dimensionless and can be
written as two rapidly convergent sums, one in real
space and the other in reciprocal space, (Born &
Huang, 1954), giving

X = 202 Hcx(&ljr)— orrcly

+ n/2czs ' G(m2|b(k)|2r2/c?) exp [27ib(R).

x@9], (2)
where oo
@ = @y (Uj2)\ exp (~e)de,
G(x) = (1/x) exp (—x),
x(fp) = x()—x(R);
the volume of a unit cell is v=s73, b(h) is a reciprocal-

lattice vector and ¢ is a number which is chosen so
that the convergence is obtained as rapidly as possible.

The forces between the effective dipoles created at
the atomic sites during the lattice vibrations can be
calculated in a similar way. If the total dipole asso-
ciated with the atomic site (%) is

p(%) = p(k') exp [27iy .x(})]

then the x component of the electric field at x(2)
due to these dipoles is given by

and

E, exp [271y . x(})]
=%pﬂ( 4 s . exp 27y .x ()]

) aw by KO —x()

SOME CALCULATIONS USING THE EWALD TRANSFORMATION

The forces can then be expressed in terms of
dimensionless Coulomb coefficients C(%)(kk') defined

by
) o @
C(H) (k) = —v |

s exp [2my.X [2my x( lx__ ]
ox, 0z 1

xE) -x@F

x exp 2ziy . x(§-3) .

The part of this expression which is enclosed in the
brackets is periodic in y and all the distinct values
are obtained if we restrict y to one reciprocal lattice
cell. The exponential term outside depends on the
phase factors which are chosen to describe the electric
field and the dipoles or, for the lattice vibrations,
on the phase factors of the displacements. Although
the phases will in general vary as y changes by a
reciprocal-lattice vector, the frequencies of the lattice
vibrations will not. It is therefore necessary to tabulate
these Coulomb coefficients only within one reciprocal-
lattice cell.

The Coulomb coefficients can be transformed by
using the transformation (1) to give (Born & Huang,
1954),

O () (kE') = — % 3 Hop(oIx (-2 r) exp [2iy . x()]

+(47%2[c2) X (ba(R) +Ya) (bg(h) + yg)G (2| b(R) +y[2r2/c2)
n
x exp [2aib(R).X(%)], (3)
where
2
H4(x]) = ga_xﬁﬂ(lxu .

The term corresponding to the dipole at (2) must
be eliminated in calculating the forces or effective
field at (}) and this is done by replacing H(|xl) by
HO(|x|), when I'=0 and k'=Fk, such that

3o
2
Ho(xl) = = = esp (— e

It is also well known that the value of the term
involving =0 in the second summation is ambiguous
when =0 and can be associated with the macroscopic
field (Born & Huang, 1954). This term may however
be calculated by taking the limit as y — 0 in a par-
ticular specified direction.

The elastic constants are obtained from the ex-
pansions of the Coulomb coefficients near wave num-
ber zero, (Born & Huang, 1954). The coefficients
may be expanded in dimensionless form as:

C (Y (kk') = CY(kk' )+z820‘2 (kk')y,a,

5522_,' CO (kK Yy, yaa,a,+ . .. .
va

a, is the repeat distancc along the y axis. It then
follows that
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10
O3, (kk') = —2760332Haﬁ <c]x I>xy(k’k)

@y

nzlb(h)lﬁr%>
c2

473729

3| (bulh) g, + 5110, (

czay h
2 2(b(h)|272
+ 220 bt 6 (RG]
x exp [27ib(R). X ()], (4)
while the second-order coefficient is

aﬁ v (kk’)

+4n2c3s 3 H,g (C]X ki |) 2, (i 2) 2 (i)
I a. a,.

4
n r —— (0501+ 0.295,)

4n3r2

+ %ﬁ:{z [(5/3750‘1"‘ 0p10,y) G (
4 r4

+ 2 b, )by, (1) 6
2n2r

s (ba(R)bg(R) O,y +b (R)b.(h) gy 4+ 0,(R)b;(R) b,

2(b(h
+ by(h)b,(R) 83+ ()b, (R)6..,) G ("‘ 22)‘2’2”

x exp [2mtb(h).x(3%)] . (5)

This expression differs from that of Born & Huang
(1954) who include a term

0.50,(R)by(h)
in the last part of the expression; we can find no
justification for this.

Machine programs have been written for the Edsac
IT which calculate the expressions (2), (3), (4) and (5)
for structures for which orthogonal axes can be chosen;
the summation is then performed over all the points
on a simple orthorhombic lattice. The lattice is
specified by the two axial ratios, aifas and as/as,
while the lattice parameter r is chosen to be as.
The adjustable number c¢ is fixed at 7, for which value
the time taken for the calculations was found usually
to be a minimum. The summation is performed on
successively larger and larger rectangular volumes in
both real and reciprocal space and is stopped when
the partial sum over all the points lying outside one
of the volumes but inside the next is less in magnitude
than some predetermined value.

The coefficients can be calculated for any point &
in the unit cell and by combining several coefficients,
it is possible to obtain the coefficients for all structures
with orthorhombic or higher symmetry. Provision is
included within the programs for calculating the
coefficients of face-centred and body-centred struc-
tures, and also for the printing of either the real or
both the real and imaginary parts of the Coulomb
coefficients.

The Coulomb coefficients and the partial Madelung
coefficients have been calculated for the Perovskite
structure; the Coulomb coefficients have been cal-
culated for a series of wave-numbers parallel to the

7*[b(h )]372>
c2

”Zlb(’L)l??_‘?>
c2
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ferro-electric axis of barium titanate, {001). They
have been calculated both for the atomic positions
in the undistorted paraelectric phase and for the
tetragonal ferro-electric phase, using the axial ratio
obtained by Rhodes (1951), and the atomic positions
measured by Frazer, Danner & Pepinsky (1955).

The axial ratio of the tetragonal ferroelectric phase
at 20 °C. ai/as=0-9892.

The atomic positions

Atom  Paraelectric phase  Ferroelectric phase
Ti 0 0 0 0 o0 0)

Ba (0-5 0-5 0-5) (0-5 0-5  0-486)
Og 0 0 09 0 0 0-463)
On (050 0) (0-5 0 —0-028)
O 0 05 0) (0 05 —0-028)

Four different sets of coefficients are needed to
describe the Madelung electrostatic interactions in the
paraelectric phase while eight are needed in the ferro-
electric one.

Partial Madelung coefficients

Paraelectric Ferroelectric
Interaction phase phase
Ti-Ti(Ba-Ba)(0-0) 1-25950 1-26625
Ti-Ba 0-24181 0-24107
Ti-Og —0-11119 —0-11503
Ti—O11(Ti-Or11) -0-11119 —0-11776
Ba-O1 0-13210 0-12617
Ba-011(Ba-Or11) 0-13210 0-13290
OI—OII(OI—OIII) 0-13210 0-13316
O11-O111 0-13210 0-12554

Coulomb coefficients

The Coulomb coefficients have been calculated for a
wave-vector parallel to the ferro-electric axis (0, 0, 1
and are described by g=yas. A reasonable survey of
the coefficients is obtained if we divide the range
of ¢, within one zone, —0-5<g < 05, into tenths.
The frequencies of the lattice vibrations will then
be the same for ¢ and —g¢ and the coefficients are
tabulated in the range 0 < g < 0-5. Moreover each
atom is situated on a centre of symmetry in the
paraelectric phase and so there is no imaginary part
to the Coulomb coefficients in that phase.

Paraelectric phase
Ti-Ti interaction

Wave- Caplkk)=

vector C,,(Ti-Ti) Coo(Ti-Ti) Cya(Ti-T)
q 11 22 33
0-5 —4-844 —4-844 9-687
0-4 —4-782 —4-782 9-563
0-3 —4-618 —4-618 9-236
0-2 —4-416 —4-416 8-832
0-1 —4-252 —4-252 8:503
0 —4-189 —4-189 8-378

Ti~Ba interaction

q 11 22 33
0-5 0 0 0
0-4 —1-281 —1-281 2:561
0-3 —2-443 —2-443 4-886
0-2 —3-375 —3-375 6-750
01 —3-979 — 3979 7-958
0 —4-189 —4-189 8-378
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— 1D

05
0-4
0-3
0-2
0-1

0-5
0-4
0-3
0-2
0-1
0

05
0-4
03
0-2
0-1

o000
Lol CIZUN S

coooo
— D W B

11
Real
—4-874
—4-815
—4-662
—4-471
—4-317
—4-258

11

Real

—0-012
—1-273
—2-416
—3-332
—3-926
—4-132

11
Real

SOME CALCULATIONS USING THE EWALD TRANSFORMATION

Ti—Oj interaction

11 22

0 0
3-339 3-339
6-359 6-359
8:765 8-765
10-316 10-316
10-852 10-852

Ti-Ogg interaction

11 22
—33-622 10-323
—33-684 10-373
—33-845 10-505
—34-046 10-668
—34-208 10-801
—34-271 10-852

Ba-Oj interaction

11 22
—~7-996 —17-996
—8-046 —8-046
—8-177 —8-177
—8:340 —8:340
—8-472 —8-472
—~8-523 —8:523

Ba-Ojg interaction

11 22

0 0
1-370 —2-619
2-614 —4-989
3-610 —6-880
4-255 —8-101
4-479 — 8523

Ferroelectric phase

Ti-Ti interaction

11 22 22
Imag. Real Imag.
0 —4-874 0
0 —4-815 0
0 —4-662 0
0 —4-471 0
0 —4-317 0
0 —4-258 0

Ti-Ba interaction

11 22 22
Imag. Real  Imag.
—0-278 —0-012 —0-278
—0220 —1-273 —0-220
—0-162 —2-416 —0-162
—0-106 —3-332 —0-106
—0-052 —3-926 —0-052

0 —4-132 0

Ti-07 interaction

33

—6-678
—12-717
—17-530
—20-632
—21-704

33
23-299
23-311
23-341
23-377
23-407
23-419

33
15-992
16-091
16-354
16-679
16-944
17-045

33

1-249
2-376
3271
3-846
4:044

33 33
Real Imag.
9-748
9:630
9-323
8:942
8:633
8:515

[ el e e R ]

33 33

Real Imag.
0-024 0:555
2-546 0-440
4-833 0-324
6-665 0-212
7-853 0-105
8-264 0

33 33
Real Imag.

Ti-Og; interaction

11 11 22 22 33 33
q Real Imag. Real Imag. Real Imag.
05 — 38565 2:960 10-340 —0-912 23225 —2-048
0-4 —33:673 2.340 10404 —0-708 23-268 —1-632
03 —33-864 1-735 10-542 —0-516 23-322 —1-219
0-2 —384-081 1-146 10707 —0-336 23-375 —0-810
0-1 —34-252 0-569 10-839 —0-165 23413 —0-404
0 —34-316 0 10-889 0 23-428 0
Ba-Oj interaction
11 11 22 22 33 33
q Real Imag. Real Imag. Real Imag.
05 —8-:047 0-582 —8-047 0-582 16-095 —1-165
0-4 — 8104 0-448 —8-104 0-448 16-208 —0-897
03 —8:235 0-324 —8:235 0-324 16-470 —0-648
02 —8-395 0-210 —8-395 0-210 16-789 —0-419
01 —8523 0103 —8523 0103 17-046 —0-205
0 —8572 0  —83712 0 17144 0
Ba-Ojy interaction
11 11 22 22 33 33
q Real Imag. Real Imag. Real Imag.
05 0:014 0-315 —0-033 —0-748 0-019 0-433
0-4 1-361 0-252 —2-591 —0-622 1-230 0-369
0-3 2:582 0-188 —4-905 —0-478 2-323 0-290
0-2 3-560 0124 —6-750 —0-323 3-190 0-199
0-1 4194 0061 —7-941 —0-163  3-747  0-101
0 4-413 0 —8-352 0 3-939 0
01-0q interaction
11 11 22 22 33 33
q Real Imag. Real Imag. Real Imag.
0-5 -0-013 0481 0:006 —0-202 0-008 —0-278
0-4 —2-572 0-400 1353 —0-162 1-218 —0-237
0-3 —4-886 0-307 2575 —0-121 2-311 —0-186
0-2 —6-732 0-208 3-554 —0-080 3-178 —0-128
0-1 —17-922 0-105 4-188 —0-040 3-735 —0-065
0 —8-334 0 4-407 0 3-926 0
011011 interaction
11 11 22 22 ‘33 33
q Real Imag. Real Imag. Real Imag.
05 —8-100 0 —8-100 0 16-200 0
04 —8-147 0 —8-147 0 16-294 0
0-3 —8-271 0 —8-271 0 16-543 0
0-2 —8:425 0 —8:425 0 16-851 0
0-1 — 8551 0 —8-551 0 17-102 0
0 —8:599 0 — 8599 0 17-198 0
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