other than $3 d^{n}$ for which the calculations were carried out.

Comparison with experiment

There have been very few experimental determinations of the incoherent scattering intensities (for $\mathrm{C}, \mathrm{Al}, \mathrm{KCl}$, CaF_{2} and NaCl) but these have not included any of the atoms considered in this paper. While the agreement between theory and experiment has been very good for these cases, it would be valuable to have accurate measurements for the transition elements, both for their own inherent interest and to compare with theory in order to test its validity. While the experiments are not easy to perform we hope that they will soon be undertaken.

APPENDIX A

We give in Table 3 a listing of the atoms and ions for which accurate incoherent scattering functions are now known in order to provide a convenient summary of the data available to date. The results of the present work are not included.

We are pleased to thank Mrs Anna Hansen \& Mrs Athena Harvey for their help with the computations.

References

Breit, G. (1926). Phys. Rev. 27, 362.
Dirac, P. A. M. (1926). Proc. Roy. Soc. A, 111, 405. Freeman, A. J. (1959a). Phys. Rev. 113, 169.
Freeman, A. J. (1959b). Phys. Rev. 113, 176.
Freeman, A. J. (1959c). Acta Cryst. 12, 274.

Freeman, A. J. (1959d). Acta Cryst. 12, 929.
Freeman, A. J. (1960a). Acta Cryst. 13, 190.
Freeman, A. J. (1960b). Acta Cryst. 13, 618.
Freeman, A. J. \& Watson, R. E. (1961). Acta Cryst. 14, 231.

Hartree, D. R. (1954). Proc. Camb. Phil. Soc. 51, 126.
Hartree, D. R. (1956). J. Opt. Soc. Amer. 46, 350.
Hartree, D. R. \& Hartree, W. (1936). Proc. Roy. Soc. A, 157, 490.
James, R. W. \& Brindley, G. W. (1931). Phil. Mag. 12, 81. Their data is conveniently tabulated in A. H. Compton \& S. K. Allison, X-rays in Theory and Experiment (1935). New York: Van Nostrand.
Keating, D. T. \& Vineyard, G. H. (1956). Acta Cryst. 9, 895.
Mayers, D. F. (1959). Unpublished.
Milberg, M. E. \& Brailsford, A. D. (1958). Acta Cryst. 11, 672.
Piper, W. (1961). Phys. Rev. 123, 1281.
Roothann, C. C. J. (1951). Rev. Mod. Phys. 23, 69.
Slater, J. C. (1951). Phys. Rev. 81, 385.
Waller, I. \& Hartree, D. R. (1929). Proc. Roy. Soc. A, 124, 119.
Watson, R. E. (1959). Technical Report \#12, Solid State \& Molecular Theory Group, MIT, June 15. Unpublished.
Watson, R. E. (1960). Phys. Rev. 118, 1036.
Watson, R. E. \& Freeman, A. J. (1960). Phys. Rev. 120, 1134.
Watson, R. E. \& Freeman, A. J. (1961a). Acta Cryst. 14, 27.
Weiss, R. J. \& Demarco, J. J. (1958). Rev. Mod. Phys. 30, 59.
Wood, J. H. \& Pratt, G. W., Jr. (1957). Phys. Rev. 107, 995.

Worsley, B. H. (1958). Proc. Roy. Soc. A, 247, 390.

Some Calculations using the Ewald Transformation

By R. A. Cowley
Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

(Received 21 September 1961)

Abstract

The calculation of the energy, dispersion relations of the normal modes, and elastic constants of a crystal requires a knowledge of the long-range Coulomb interactions between the atoms. The summations involved can be expressed in dimensionless form and converted to a rapidly convergent form by using the Ewald transformation. Machine programs have been written to calculate the Madelung coefficients, Coulomb coefficients, and the expansions of the Coulomb coefficients, (which are required to calculate the elastic constants), for crystals which have at least orthorhombic symmetry. Both the Madelung coefficients, and the Coulomb coefficients for wave-vectors parallel to the ferro-electric axis, have been calculated for barium titanate, using the atomic positions both of the paraelectric phase and of the ferroelectric phase at $20^{\circ} \mathrm{C}$.

The total energy of a non-metallic crystal is usually divided into two parts-one from the Coulomb interaction of point charges, dipoles and higher multipole moments representing the long-range interactions between the atoms in the crystal, and the other from
the short-range or repulsive forces. Although the potential for the interaction of point charges and multipoles is readily obtained from classical electrostatics, the short-range interaction is essentially of a quantum-mechanical nature, and cannot usually be
calculated explicitly. If however the short-range interaction between different pairs of atoms within the crystal is either known or assumed to have some particular form, then the contributions from the short-range interactions to both the energy of the crystal and the forces on an atom are obtained by summing these interactions over comparatively few atoms. On the other hand the potential for the Coulomb interaction is easily obtained but the longrange nature of the force makes the summation much more difficult. The summations involved can however be made more rapidly convergent by using the Ewald transformation, (Ewald, 1920; Born \& Huang, 1954), which is based on the identity

$$
\begin{equation*}
\mathbf{I}_{l} /|\mathbf{x}(l)-\mathbf{x}|=2 / V \pi \int_{0}^{\infty} \exp -|\mathbf{x}(l)-\mathbf{x}|^{2} \varrho^{2} d \varrho \tag{1}
\end{equation*}
$$

The contribution to the energy of the crystal from the interaction of an atom at $\mathbf{x}\binom{0}{k}$ carrying charge z_{k} with atoms at $\mathbf{x}\left(k_{k^{\prime}}^{\prime}\right)$ having charge $z_{k^{\prime}}$ is given by

$$
z_{k} z_{k^{\prime}} x_{k k^{\prime}} / r=z_{k} z_{k^{\prime}} \frac{1}{2} \sum_{l^{\prime}} \mathbf{N} 1 /\left|\mathbf{x}\left(\begin{array}{l}
l_{k^{\prime}}^{\prime}
\end{array}\right)-\mathbf{x}\binom{0}{k}\right|
$$

The prime over the summation sign indicates the omission of the term $\binom{0}{k}=\binom{l^{\prime}}{k^{\prime}}$, and r is any convenient characteristic dimension of the lattice.

The total electrostatic or Madelung energy is then given by

$$
\sum_{k k^{\prime}} z_{k} z_{k^{\prime}} \alpha_{k k^{\prime}} / r
$$

The coefficients $\alpha_{k k}$, are dimensionless and can be written as two rapidly convergent sums, one in real space and the other in reciprocal space, (Born \& Huang, 1954), giving

$$
\begin{align*}
& \alpha_{k k^{\prime}}=\frac{1}{2} c \sum_{l^{\prime}} H\left(c\left|\mathbf{x}\left({ }_{\left.k^{k^{\prime}}{ }^{\prime}{ }^{\prime}\right)}\right)\right| / r\right)-\delta_{k k^{\prime}} c / V \pi \\
& +\pi / 2 c^{2} s \sum_{h}{ }^{\prime} G\left(\pi^{2}|\mathbf{b}(h)|^{2} r^{2} / c^{2}\right) \exp \left[2 \pi i \mathbf{b}(h) \cdot \mathbf{x}\binom{00}{k k^{\prime}}\right], \tag{2}
\end{align*}
$$

where

$$
\begin{aligned}
& H(x)=(2 / V \pi)(1 / x) \int_{x}^{\infty} \exp \left(-\varrho^{2}\right) d \varrho \\
& G(x)=\left(1^{\prime} x\right) \exp (-x)
\end{aligned}
$$

and

$$
\mathbf{x}\binom{l^{\prime} k^{\prime}}{k^{\prime}}=\mathbf{x}\binom{l^{\prime}}{k^{\prime}}-\mathbf{x}\binom{0}{k} ;
$$

the volume of a unit cell is $v=s r^{3}, \mathbf{b}(h)$ is a reciprocallattice vector and c is a number which is chosen so that the convergence is obtained as rapidly as possible.

The forces between the effective dipoles created at the atomic sites during the lattice vibrations can be calculated in a similar way. If the total dipole associated with the atomic site $\binom{l^{\prime}}{k^{\prime}}$ is

$$
\mathbf{p}\left(\begin{array}{l}
l_{k^{\prime}}^{\prime}
\end{array}\right)=\mathbf{p}\left(k^{\prime}\right) \exp \left[2 \pi i \mathbf{y} \cdot \mathbf{x}\binom{l^{\prime}}{k^{\prime}}\right]
$$

then the α component of the electric field at $\mathbf{x}\binom{0}{k}$ due to these dipoles is given by

$$
\begin{aligned}
& E_{\alpha} \exp \left[2 \pi i \mathbf{y} \cdot \mathbf{x}\binom{0}{k}\right] \\
&=\sum_{\beta} p_{\beta}\left(k^{\prime}\right) \frac{\partial}{\partial x_{\alpha}} \frac{\partial}{\partial x_{\beta}} \sum_{l^{\prime}} \frac{\exp \left[2 \pi i \mathbf{y} \cdot \mathbf{x}\binom{l^{\prime}}{k^{\prime}}\right]}{\left|\mathbf{x}\binom{l^{\prime}}{k^{\prime}}-\mathbf{x}\binom{0}{k}\right|} .
\end{aligned}
$$

The forces can then be expressed in terms of dimensionless Coulomb coefficients $C\left({ }_{\alpha \beta}^{y}\right)\left(k k^{\prime}\right)$ defined by

$$
\begin{aligned}
& \times \exp 2 \pi i \mathbf{y} \cdot \mathbf{x}\binom{0}{k^{\prime} k} .
\end{aligned}
$$

The part of this expression which is enclosed in the brackets is periodic in y and all the distinct values are obtained if we restrict y to one reciprocal lattice cell. The exponential term outside depends on the phase factors which are chosen to describe the electric field and the dipoles or, for the lattice vibrations, on the phase factors of the displacements. Although the phases will in general vary as y changes by a reciprocal-lattice vector, the frequencies of the lattice vibrations will not. It is therefore necessary to tabulate these Coulomb coefficients only within one reciprocallattice cell.

The Coulomb coefficients can be transformed by using the transformation (1) to give (Born \& Huang, 1954),

$$
\begin{align*}
& C\left({ }_{\alpha \beta}^{y}\right)\left(k k^{\prime}\right)=-c^{3} s \sum_{l^{\prime}} H_{\alpha \beta}\left(c\left|\mathbf{x}\left(k_{k^{\prime}}^{l^{\prime}}{ }^{\prime}\right)\right| / r\right) \exp \left[2 \pi i \mathbf{y} \cdot \mathbf{x}\left(k_{k^{\prime}}^{l^{\prime}}{ }^{\prime}\right)\right] \\
& +\left(4 \pi^{3} r^{2} / c^{2}\right) \sum_{h}\left(b_{\alpha}(h)+y_{\alpha}\right)\left(b_{\beta}(h)+y_{\beta}\right) G\left(\pi^{2}|\mathbf{b}(h)+\mathbf{y}|^{2} r^{2} / c^{2}\right) \\
& \times \exp \left[2 \pi i \mathbf{b}(h) \cdot \mathbf{x}\binom{00}{k k^{\prime}}\right], \tag{3}\\
& \text { where } \\
& H_{\alpha \beta}(|\mathbf{x}|)=\frac{\partial}{\partial x_{\alpha}} \frac{\partial}{\partial x_{\beta}} H(|\mathbf{x}|) .
\end{align*}
$$

The term corresponding to the dipole at $\binom{0}{k}$ must be eliminated in calculating the forces or effective field at $\binom{0}{k}$ and this is done by replacing $H(|\mathbf{x}|)$ by $H^{0}(|\mathbf{x}|)$, when $l^{\prime}=0$ and $k^{\prime}=k$, such that

$$
H^{0}(|\mathbf{x}|)=-\frac{2}{\sqrt{ }(\pi) x} \int_{0}^{x} \exp \left(-\varrho^{2}\right) d \varrho
$$

It is also well known that the value of the term involving $h=0$ in the second summation is ambiguous when $y=0$ and can be associated with the macroscopic field (Born \& Huang, 1954). This term may however be calculated by taking the limit as $y \rightarrow 0$ in a particular specified direction.

The elastic constants are obtained from the expansions of the Coulomb coefficients near wave number zero, (Born \& Huang, 1954). The coefficients may be expanded in dimensionless form as:

$$
\begin{aligned}
C\binom{\varepsilon \beta}{\varepsilon \beta}\left(k k^{\prime}\right)=C_{\alpha \beta}^{(0)}\left(k k^{\prime}\right) & +i \varepsilon \sum_{\gamma} C_{\alpha \beta, \gamma}^{(1)}\left(k k^{\prime}\right) y_{\gamma} a_{\gamma} \\
& +\frac{1}{2} \varepsilon^{2} \sum_{\gamma \lambda} C_{\alpha \beta, \gamma \lambda}^{(2)}\left(k k^{\prime}\right) y_{\gamma} y_{\lambda} a_{\gamma} a_{\lambda}+\ldots
\end{aligned}
$$

a_{γ} is the repeat distance along the γ axis. It then follows that

$$
\begin{align*}
& C_{\alpha \beta, \gamma}^{(1)}\left(k k^{\prime}\right)=-2 \pi c^{3} s \sum_{l^{\prime}} H_{\alpha \beta}\left(-\frac{c\left|\mathbf{x}\binom{k^{\prime}, 0}{l^{\prime}}\right|}{r}\right) \frac{x_{\gamma}\left(\begin{array}{l}
\left.l^{\prime} k^{\prime}{ }^{\prime}\right)
\end{array}\right.}{a_{\gamma}} \\
& -\frac{4 \pi^{3} r^{2} i}{c^{2} a_{\gamma}} \sum_{h}^{\prime \prime}\left[\left(b_{\alpha}(h) \delta_{\beta \gamma}+b_{\beta}(h) \delta_{\alpha \gamma}\right) G\left(\frac{\pi^{2}|\mathbf{b}(h)|^{2} r^{2}}{c^{2}}-\right)\right. \\
& \left.+\frac{2 \pi^{2} r^{2}}{c^{2}} b_{\alpha}(h) b_{\beta}(h) b_{\gamma}(h) G^{\prime}\left(\frac{\pi^{2}|\mathbf{b}(h)|^{2} r^{2}}{c^{2}}\right)\right] \\
& \quad \quad \times \exp \left[2 \pi i \mathbf{b}(h) \cdot \mathbf{x}\binom{00}{k k^{\prime}}\right], \tag{4}
\end{align*}
$$

while the second-order coefficient is

$$
\begin{align*}
& C_{\alpha \beta, \gamma \lambda}^{(2)}\left(k k^{\prime}\right)=-\frac{4 \pi^{3} r^{2}}{c^{2}}\left(\delta_{\alpha \gamma} \delta_{\beta \lambda}+\delta_{\alpha \lambda} \delta_{\beta \gamma}\right) \\
& +4 \pi^{2} c^{3} s \sum_{l^{\prime}} H_{\alpha \beta}\left(\frac{c\left|\mathbf{x}\binom{\left(l^{\prime}, 0\right.}{k^{\prime} k}\right|}{r}\right) \frac{\left.x_{\gamma}-\frac{\left(l^{\prime}, 0\right.}{k^{\prime} k}\right) x_{\lambda}\binom{l^{\prime}, 0}{k^{\prime} k}}{a_{\gamma} a_{\lambda}} \\
& +\frac{4 \pi^{3} r^{2}}{c^{2} a_{\gamma} a_{\lambda}} \sum_{h}\left[\left(\delta_{\beta \gamma} \delta_{\alpha \lambda}+\delta_{\beta \lambda} \delta_{\alpha \gamma}\right) G\left(\frac{\pi^{2}|\mathbf{b}(h)|^{2} r^{2}}{c^{2}}\right)\right. \\
& +\frac{4 \pi^{4} r^{4}}{c^{4}} b_{\alpha}(h) b_{\beta}(h) b_{\gamma}(h) b_{\lambda}(h) G^{\prime \prime}\left(\frac{\pi^{2}|\mathbf{b}(h)|^{2} r^{2}}{c^{2}}\right) \\
& +\frac{2 \pi^{2} r^{2}}{c^{2}}\left(b_{\alpha}(h) b_{\beta}(h) \delta_{\gamma \lambda}+b_{\gamma}(h) b_{\gamma}(h) \delta_{\beta \lambda}+b_{\alpha}(h) b_{\lambda}(h) \delta_{\beta \gamma}\right. \\
& \left.\left.+b_{\beta}(h) b_{\gamma}(h) \delta_{\alpha \lambda}+b_{\beta}(h) b_{\lambda}(h) \delta_{\alpha \gamma}\right) G^{\prime}\left(\frac{\pi^{2}|\mathbf{b}(h)|^{2} r^{2}}{c^{2}}\right)\right] \\
& \times \exp \left[2 \pi i \mathbf{b}(h) . \mathbf{x}\binom{00}{k k^{\prime}}\right] . \tag{5}
\end{align*}
$$

This expression differs from that of Born \& Huang (1954) who include a term

$$
\delta_{\alpha \beta} b_{\gamma}(h) b_{\lambda}(h)
$$

in the last part of the expression; we can find no justification for this.

Machine programs have been written for the Edsac II which calculate the expressions (2), (3), (4) and (5) for structures for which orthogonal axes can be chosen; the summation is then performed over all the points on a simple orthorhombic lattice. The lattice is specified by the two axial ratios, a_{1} / a_{3} and a_{2} / a_{3}, while the lattice parameter r is chosen to be a_{3}. The adjustable number c is fixed at π, for which value the time taken for the calculations was found usually to be a minimum. The summation is performed on successively larger and larger rectangular volumes in both real and reciprocal space and is stopped when the partial sum over all the points lying outside one of the volumes but inside the next is less in magnitude than some predetermined value.

The coefficients can be calculated for any point k^{\prime} in the unit cell and by combining several coefficients, it is possible to obtain the coefficients for all structures with orthorhombic or higher symmetry. Provision is included within the programs for calculating the coefficients of face-centred and body-centred structures, and also for the printing of either the real or both the real and imaginary parts of the Coulomb coefficients.

The Coulomb coefficients and the partial Madelung coefficients have been calculated for the Perovskite structure; the Coulomb coefficients have been calculated for a series of wave-numbers parallel to the
ferro-electric axis of barium titanate, $\langle 001\rangle$. They have been calculated both for the atomic positions in the undistorted paraelectric phase and for the tetragonal ferro-electric phase, using the axial ratio obtained by Rhodes (1951), and the atomic positions measured by Frazer, Danner \& Pepinsky (1955).

The axial ratio of the tetragonal ferroelectric phase at $20^{\circ} \mathrm{C} . a_{1} / a_{3}=0.9892$.

The atomic positions						
Atom	Paraelectric phase	Ferroelectric phase				
Ti	$(0$	0	$0)$	$(0$	0	$0)$
Ba	$(0.5$	0.5	$0.5)$	$(0.5$	0.5	$0.486)$
O_{I}	$(0$	0	$0.5)$	$(0$	0	$0.463)$
$\mathrm{O}_{\text {II }}$	$(0.5$	0	$0)$	$(0.5$	0	$-0.028)$
$\mathrm{O}_{\mathrm{III}}$	$(0$	0.5	$0)$	$(0$	0.5	$-0.028)$

Four different sets of coefficients are needed to describe the Madelung electrostatic interactions in the paraelectric phase while eight are needed in the ferroelectric one.

Partial Madelung coefficients

Interaction	Paraelectric phase	Ferroelectric phase
$\mathrm{Ti}-\mathrm{Ti}(\mathrm{Ba}-\mathrm{Ba})(\mathrm{O}-\mathrm{O})$	$1 \cdot 25950$	1-26625
$\mathrm{Ti}-\mathrm{Ba}$	$0 \cdot 24181$	$0 \cdot 24107$
$\mathrm{Ti}-\mathrm{O}_{\mathrm{I}}$	-0.11119	-0.11503
$\mathrm{Ti}-\mathrm{O}_{\mathrm{II}}\left(\mathrm{Ti}-\mathrm{O}_{\mathrm{II}}\right)$	-0.11119	-0.11776
$\mathrm{Ba}-\mathrm{O}_{\mathrm{I}}$	0.13210	$0 \cdot 12617$
$\mathrm{Ba}-\mathrm{O}_{\mathrm{II}}\left(\mathrm{Ba}-\mathrm{O}_{\mathrm{III}}\right)$	$0 \cdot 13210$	$0 \cdot 13290$
$\mathrm{O}_{\mathrm{I}}-\mathrm{O}_{\text {II }}\left(\mathrm{O}_{\mathrm{I}}-\mathrm{O}_{\text {III }}\right)$	$0 \cdot 13210$	$0 \cdot 13316$
$\mathrm{O}_{\text {II }}-\mathrm{O}_{\text {III }}$	$0 \cdot 13210$	$0 \cdot 12554$

Coulomb coefficients

The Coulomb coefficients have been calculated for a wave-vector parallel to the ferro-electric axis $\langle 0,0,1\rangle$ and are described by $q=y a_{3}$. A reasonable survey of the coefficients is obtained if we divide the range of q, within one zone, $-0.5<q \leq 0.5$, into tenths. The frequencies of the lattice vibrations will then be the same for q and $-q$ and the coefficients are tabulated in the range $0 \leq q \leq 0.5$. Moreover each atom is situated on a centre of symmetry in the paraelectric phase and so there is no imaginary part to the Coulomb coefficients in that phase.

Paraelectric phase

$\mathrm{Ti}-\mathrm{Ti}$ interaction

Wavevector	$\begin{aligned} & C_{\alpha \beta}\left(k k^{\prime}\right)= \\ & C_{11}(\mathrm{Ti}-\mathrm{Ti}) \end{aligned}$	$C_{22}(\mathrm{Ti}-\mathrm{Ti})$	$\mathrm{C}_{33}(\mathrm{Ti} \cdot \mathrm{Ti})$
q	II	22	33
$0 \cdot 5$	-4.844	$-4 \cdot 844$	9.687
$0 \cdot 4$	-4.782	-4.782	$9 \cdot 563$
$0 \cdot 3$	$-4 \cdot 618$	$-4 \cdot 618$	9.236
$0 \cdot 2$	-4.416	$-4 \cdot 416$	$8 \cdot 832$
$0 \cdot 1$	$-4 \cdot 252$	$-4 \cdot 252$	8.503
0	$-4 \cdot 189$	$-4 \cdot 189$	$8 \cdot 378$
$\mathrm{Ti}-\mathrm{Ba}$ interaction			
q	11	22	33
$0 \cdot 5$	0	0	0
$0 \cdot 4$	-1.281	-1.281	2.561
$0 \cdot 3$	$-2 \cdot 443$	$-2 \cdot 443$	$4 \cdot 886$
$0 \cdot 2$	-3.375	$-3 \cdot 375$	$6 \cdot 750$
$0 \cdot \mathrm{I}$	-3.979	-3.979	7.958
0	-4.189	-4.189	$8 \cdot 378$

